Finite Element Analysis

Geotechnical Earthquake Engineering

Course Description

In this course, We will learn about Introduction to Geotechnical Earthquake Engineering:Scope and objective; Nature and types of earthquake loading; Importance of Geotechnical Earthquake Engineering;Basics of Vibration theory:Concept of dynamic load, Earthquake load, Single degree of freedom system, Multiple degree of freedom system, Free and forced vibrations, Damped and undamped systems, Equation of Motion, Response spectra;Engineering Seismology:Basic Seismology, Earthquake, List of major earthquakes, Causes of earthquakes, Sources of earthquake data, Elastic rebound Theory, Faults, Plate tectonics, Seismograph and Seismogram, Prediction of Earthquakes, Protection against earthquake damage, Origin of Universe, Layers of Earth, Theory of Continental Drift, Hazards due to Earthquakes;Strong Ground Motion:Size of Earthquake: Magnitude and Intensity of Earthquake, Modified Mercalli Intensity Scale, Measuring of Earthquake, Earthquake Magnitude- Local (Richter) magnitude, surface wave magnitude, Moment magnitude, Seismic energy, Correlations. Spectral Parameters: Peak Acceleration, Peak Velocity, Peak Displacement, Frequency Content and duration, Spatial Variability of Ground Motion, Attenuation Relationships, Fourier Amplitude Spectra, Arias Intensity.

Course Objective

This course on Geotechnical Earthquake Engineering introduces the fundamental concepts of earthquake engineering related to geotechnical problems.

Ask a Question

My Questions